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ABSTRACT
23507
The study begins with some formsl apparatus of the theory (non-linear). The
analogue of Clebsch's transformation of the hydrodynamical equations allows & useful
representation for the magnetic field; this representation leads in turn to some
canonical equations for the motion of magnetic field of great theoretical interest.

A theorem of decamposition of the magnetic field similar to the Cauchy-Stokes
decamposition theorem in hydrodynamics is also here presented. The rest of the
report deals with hydramagnetic wave propagation in (i) a constant and uniform
megnetic field; (ii) in a constant dipole.

The effect of compressibility is especially investigated in the case of a
constant and uniform magnetic field.

The disturbance is specified in terms of vorticity and current density. It
appears that the campressibility of a medium acts as a wave filter discriminating
between camponents of vorticity (and current density) and passing only those
directed along the (undisturbed) magnetic field.

The case of a dipole magnetic field presents a singular importance, in view
of its applications to geophysicsal phencmena, and is discussed in some great deteil.
Dungey in his remarkable report of 1954 (The Pennsylvania State University,
Ionisphere Research laboratory, Scientific Report No. 69) has already discussed
the electrodynamic behavior of the Outer Atmosphere in the presence of a constant-
dipole magnetic field. In this study, however, the problem is approached from &
different point of view; the magnetohydrodynamic behavior of the fluid is discussed
in terms of vorticity and current de_nsity. The equations obtalned are camplicated,
however, and solutions are discussed only at large distances from the center of the
dipole.

The study of hydromegnetic wave propagation in a dipole is preceded by &

Y Hor

chapter where the geametry of lines of force is presented.
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FORWARD

The material in this report summarizes the results of researches undertaken
by the writer on the subject of Hydrmmagnetic Wave Propagation in an electrically
_conducting fluid of infinite extent embedded in a constant dipole magnetic field.
This work has been supported by a contract with the National Aeronautics and Space
Administration (Contract No. NASr-18). The little time allowed to us to investigate
the subject and the camplexity of the problem have permitted only an exploratory
effort. The phencmens, as indicated by mathematical analysis, are no doubt very
camplicated and considerable more effort is required in this direction. It is hoped,

however, that this pioneer effort may serve as an introduction to subsequent detailed
investigations.

The author takes this occasion to express his gratitude to Dr. Robert Jastrow
for his interest in and support of this work.
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INTRODUCTION

The theory of megnetohydrodynamic waves is the creation of Alfvén and Walen.
In his celebrated paper of 1942(1) Alfvén has shown that waves can travel along
magnetic lines of force in a conducting material; see also Reference 2. Wa.lénggh)
in 194k, has discussed in some detail these waves and has given the magnetohydfo--

dynamic equations starting with the principle of conservation of energy.
(19) (1,8) grag(5).

To these pioneer efforts other savants (Spitzer
Lightni1117), and MacDona1a(1®)
theory of magnetohydrodynsmic waves as presented, for instance, in Lighthill's

, Cowling
) added their researches, resulting in the elegant

great memoir of 1961. My earlier work consists mainly in analysis for the case of a
compressible £luia’3’2)

All this work presupposes a uniform magnetic field. Non-uniformity of the
magnetic field effects the theory both because the wave velocity varies in magnitude
and direction and because new forces sre introduced. The case of a dipole magnetic
field is of particular importance, in view of its applications to geophysical
phencmena. This revivifies Stormer's work(22) and other aurora theories. It is of
great importance indeed to know up to vhat an extent Stdrmer's theory may be improved
by using the hydromsgnetic approach, that is to say, assuming a fluid mechanics

continuum approximation.

Hydromegnetic wave propagation ina dipolemagnetic field has already been
discussed in some detail by Dungey§9) Our aspproach is, however, more general and
sets up the magnetohydrodynamic equations in the Outer Atmosphere at large distances
from the earth.

In a subject which is developing so rapidly, this problem cannot be discussed
with any approach to finality, but this did not seem to be a reason against writing
these pages. '

In Chapter I we rapidly review the basic equations of magnetohydrodynamics.
The analogue of Clebsch's transformation of the hydrodynamical equations allows a
useful representation for the magnetic field; this representation leads in turn
to some canonical equations for the motion of magnetic field of great theoretical
interest. The Chapter is concluded with a theorem of decomposition for the rate of
change of the magnetic field similar to the Cauchy-Stokes decamposition theorem in
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hydrodynamics. Chapter II presents the theory of magnetohydrodynamic waves in the
presence of a uniform magnetic fileld. In Chapter III we discuss in some detail

the geametry of dipole megnetic lines of force. Chapter IV deals with magnetohydro-
dynemic waves in a constant dipole magnetic field.
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CHAPTER I

BASIC CONCEPTS ~ THE EFFECT OF A MAGNETIC FIELD

1. The Basic Equations of Magnetohydrodynamics

When the displacement currents may be neglected, Maxwell's equations are

curl H = knJ , (1)
OH

curl E = - 3% (2)

UvHE=0 (3)

where the electramagnetic variables are measured in electromagnetic units, E and H
are the intensities of the electric and magnetic fields, J is the current density,
and Mo is the magnetic permeability. To complete the equations for the field, we

need an equation for the current density.

Consider an electrically conducting fluid which has a conductivity o and

executes motions described by the velocity v. The electric field it will experience
is E + Ho¥ X H, thus

J=0o(E+uyxH (4)

The equations (1) - (4) incorporate the effect of fluid motions on the electro-
magnetic field. The inverse effect of the field on the motions results from the
pondercmotive which the fluid elements experience by virtue of their carrying
currents across megnetic lines of force. This 1s the Lorentz force given by

%
]
=
(=
"
=}
]
£lo-

curl Hx H (5)

Including this force among other forces acting on the fluid, we have the
equation of motion

o)
&%

=div§_+px+ue§x§ (6)

where p is the density, P is the total stress tensor and X represents the external

forces of non-electramagnetic origin.
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In tensor notation, this equation can be written
Bv ov n OH, P n '
+ v 1-eH 1=i+px_6e (7)
3— 33| T h T %) T T TP T Sk [
where explicitly
2
Pi,j = —p&ij + auei‘j -3 sijekk (8)
and where p is the isotropic pressure, p is the coefficient of viscosity, and e 3 is
the rate of deformation given by
.1 Bvi . ov (9)
13 -2 éx_J X

For an incampressible fluid in which p is constant and the forces X derive from
a potential - @, the equation of motion (7) simplifies to

vy vy W E W u

EARME Pl ok o (A o R0 A (10)

vhere v = u/p denotes the kinematic viscosity.

In the general case, the equation of motion (7) has to be supplimented with
the equation of continuity

op , 9
St + &; (puj) =0 (ll)

and the heat equation. We shall not write down the heat equation assuming in this
study that our variables do not depend of temperature.

2. The Equation of Motion for the Magnetic Field

We shall now obtain an equation of motion for the magnetic field. In view of
further developments, it is convenient to introduce here the vector potentiel A and
the electrostatic potential @, writing in the usual way
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H=curl A (12)
divA =0 (13)
dA _ '
E=-s--grad§ (14)
We then obtain according to equation (4)
2
_J_=o-a-£--grad¢+ue}£xcurlé (15)
Substitution into equation (1) gives
oA -
a-E=zxcurlé-grad¢-ve curl curl A (16)

where Ve = (la.np,ea)'l will be designated as the magnetic viscosity (see ]i:].sa,tssersl3 )

page 21). It may be noted that Ve like v is of dimensions e secL,

Taking the curl of terms of equation (16) and assuming LA constant, we obtain
(in Cartesian coordinates)

2K
5T = curl(v x H) + veveg (17)

which is the equation of motion governing magnetic field. Equation (17) is general;
it is not restricted either to incampressible fluids or to inviscid fluids.

The case when the electrical conductivity of the medium may be considered as
infinite is a particular interest in cosmic electrodynamics. The magnetic viscosity
is then zero, and equations (16) and (17) reduce respectively to

OA
a—t—=zxcurl_.{l_-gra.d¢. 4 (18)
oH
5?;_ = cur]_(x X g) (19)
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Equations (18) and (19), especially the latter, have been the cbject of
considerable research in the literature. We may notice at once its full analogy with
the Helmholtz equation for the vorticity. This immediately permits to apply mutatis
mutandis the classical and elegant results of the theory of vorticity to the magnetic
field. In particular, it follows that the lines of force move with the fluid. For
further details of this analogy we refer to Goldstein's Lectures on Fluid Mecha.nicsslh)

page T6.

3. The Elsasser-Carstoiu Theorem

Equation (19) may be put in a form which is reminiscent of the Cauchy-Stokes
decanposition of an arbitrary instantaneous continuous motion of a fluid (see for
instance 'l‘ruesdell(23 ) page 65). Equivalent to the basic equation (19) is

H H, ov '
alh 1
H[F] -2 5, (20)

where the equation of continuity (11) has been used. Equation (20) can be rewritten

H H [ov, Ov H,[ov, Ov '
ari L Jj 1 S"l 1 _Jj 1 5_1
dt[_p-] 2 p 5xJ Xy + 2 p &;+ Xy (21)
where, besides the rate of deformation e 13’ the vorticity o = Wy J,:
ov ov
1 N (22)
®;4 52 5xJ X,

appear under its tensor components. We can write

H H N
al™1 1 3G
EE[F] = '51 ®13 * 20 3H] (23)

or in vector motation

:
&[] axEe domay 4

where we set
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G =e HH, (25)

and the gradient 1s taken with respect to Hi'

Equation (24) shows that the rate of change of the megnetic field may be
conceived as made up of two parts. The first part expresses a rotation of the field
with the fluid particle; the second pert shows that the terminus of H is moving in
the direction of the normal of the quadric of the _8ystem:

&) 5%y %y = const. (26)

on which its terminus lies.

In this form the theorem has been stated by the writergh) An integral formu-
lation closely related to this has been earlier given by Elsa.ssergzl':"’:"2 )

4. The Analogue of the Clebsch Transformation

A matter of interest in cosmic electrodynamjcs is the analogue of the Clebsch

transformation of the hydrodynamical equations (see Ia.mbSlG) page 248). Putting
A=grad P + ¢ grad v (27)
one has
H = curl(f grad ¥) = grad ¢ x grad v (28)

The representation (28) is identical teo that given by Sweet(el) (see also
Du.ngeyglo) page 31) with the éxception of a factor F, function of ¢ and ¥ only,
which appears on the right side of (28) in Sweet's representation. However, it can

be shown that Sweet's and our representation are equivalent (see Lamb, loc. cit.).

The immediate consequences of formula (28) namely
Hegrad@ =H+grad ¢ = 0 (29)

show that the magnetic field is tangent to the surfaces @ = const. and ¥ = const.,
vhich we shall call surfaces of force, and which correspond to vortex surfaces in
hydrodynamics. It is evident that their intersections are the lines of force.
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5. Hamiltonian Form for the Equation of Motion for the Megnetic Field

Let us now came back to equation (18) and substitute thereto the value of A
given by (27). We have

a%—(gradP+¢grad\jr)=zx(grad¢xgra.dﬂr) - grad ¢

= (v - grad y)grad § - (v - grad Plgrad ¥ - grad §  (30)

which can be written

Y grea v - X graa ¢ = -graa g (3)
where
R=F+I5E+9 )

Scalar multiplication of terms of equation (31) by grad § x grad ¥ gives
grad - (grad @ x grad y) =0 (33)

that is the Jacobian

3
a—?ﬁ'—“’-}x’y,z =0 | (34)

This shows that # is of the formZB(@,¥,t). Hence

Y3 ®
grad % = S gred ¥ + 53 grad ¢ (35) |
Comparison of equations (31) and (35) gives at once the Hamiltonian system
d # ay  # (3(.}
a% = - F‘l’- 3 -d-.ltk = Ba :\ )

Equations (36) are analogous to Stuart's equations in hydrodynamics (see Lemb,
loc. cit.) and were derived by this writer in a recent paperg
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CHAPTER II
MAGNETOHYDRODYNAMIC WAVES IN A CONSTANT AND UNIFORM MAGNETIC FIELD

6. The Case of an Incompressible Fluid

We begin with a discussion due to Wa.len( k) (see also Cowling(7’ )) Consider
an infinite mass of uniform fluid, at rest, embedded in & constant and uniform
megnetic fileld ;I_o . We assume this fluid to be an inviscid, incoampressible and
perfectly conducting material (o9 co0). Suppose that as a result of a perturbation,
a velocity field v is produced in a certain region, and that the magnetic field
becomes I_{o + h. The equations giving the veriations in v and h are

v

oa—z-gradp+pog.+;—curlhx(ﬂ + h) (1)
dh
6%=cur1[xx (§°+}_3)] (2)

where we have included the gravitetional potential

g = - grad @ (3)

p, 15 the uniform density of our fluid, and the term (v -+ V) ¥ has been amitted.

Now, since Eo = constant and
divv =0 (%)

divh =0 (5)

equations (1) and (2) simplify to

v h T
oa—= -gra.d[p+—-£-—+p Q]-l- E%(I_IO 'V)‘l_l_ (6)
3n
5= (& Py ™

by neglecting squares and products of the small quantities h,v. Take the divergence
of equation (6); we have
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WH +h ]
e—0 | =
div gra,d[p + N e + pon =0 (8)
In Cartesian coordinates equation (8) becomes
2 el - b
Vip+r—g—+e 8] =0 (9)
since
bl - b
p + —Tm + pon
has no singularities and is bounded,
bl - B ~
P+ —p— + p @ = constant (10)
Hence, equation (6) becames
oy
bo, 5 = H(E, - V)b (12)

ov 3h
b, 5t 7 Meo 32 (22)
oh v

Hence, by cross differentiation

Baw_r N 82y_
o 32 o
3°h 3%h
— = p? = (15)
Bt2 o Bz2
where
10
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i
A2 e

=
o}

o

(16)

§

(o)

is the Alfve,n'a phase velocity, named so in honor of its discoverer. Thus the
dlsturbance can be expressed as the resultant of two sets of waves traveling with
velocities iAo in the z-direction, i.e., along the lines of fource of the undisturbed
field. These waves are called magnetchydrodynamic (m.h.) waves.

After the two waves have separated we have in either of the waves

dv v
3t tAo dz | (17)

the sign depending on the direction of propegation of the wave considered. Comparison
of equations (13) and (17) gives

+H°! + lmp°
R S
o .

He

§=3

v (18)

Before going farther, we note, that in considering the propagation described by
Alfvén » the velocity v and the magnetic field h can be replaced by the vorticity o
and the current density J = (1/4x)curl h respectively; for one has similar equations
for these quantities, namely

Bea) 320)

— = G — (19)
ot ° dz

¥y L

— =A (20)
ot oz

together with the relation

H P
=+ 2 =+ 1
4 = 2w "Jnue‘-” (21)

T. Compressible Fluid - Vorticity and Current Density Propagation

e

In taking this point of view as a point of departure, we shall show that in the
case of a campressible medium the components of @ and J in the direction of the field

11
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only are propagated in Alfve’n's manner. Thus, surprisingly enough, the campressibility
of a medium acts as a wave filter discriminating between components of vorticity and
current density and passing only those directed along the (undisturbed) magnetic field.
The proof goes like this. When the campressibility is taken into account, the
linearized system replacing equations (6) and (7) is

ov p.H dh

05—--grad¢+—h—5— (22)
ch dv
3t " Ho 5z - H ddvy (23)

where we set

uH
p+——r—+pﬂ (21&)

Equations (4) and (5) are replaced by

g%+po div v =0 (25)
~' divh =0 (26)

p——

where p is the perturbation in density. We shall assume that

D= aip (27)

S

where a, is the ordinary sound speed in the absence of a magnetic field.

Taking the curl of terms of equations (22) and (23) we obtain

o oJ
2o 5T = Mol 3z (28)
o dw
b g7 = 2B 5-+H xgrad divy (29)

which imply importent consequences, as will be shown.
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(a) Propagetion of z-Components of Vorticity and Current Density
Equations (28) and (29) when projected on the 0, axis give
: ao.)z an
200 3 = Meflo Iz (30)
an O,
a3t~ (1)
Hence
2 2
7o 22 (32)
32 ° 32
2 2
i J; - & J,j (33)
dt ° 3z
and
B,
9z = Tz %2 (34)

Thus, the camponents of @ and J along the lines of force (longitudinal ccmponents)
are propagated in the opposite directions of the undisturbed field with velocities
:A o’

The coupling relationship (37) between longitudinal components shows that
(1) it does not depend on the magnitude of the magnetic field present; (ii) the
vanishing of éither camponent involves the vanishing of the other; this oceurs

when either quantity is zero initially.

(b) Equations for the Transverse Camponents

It may be noted that although w, and ,jz are propegated one-dimensionally, along
the magnetic lines of force, no other camponent of vorticity and current density is;
the x- and y-camponents of vorticity and current density satisfy

13
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2 2 2
d Gl 2 9 o, ) ﬁg 33p ()
32 ° 3,2 20, 3tdyoz
3% 3% A2 3
Y A2y _ o 97
32 - A, 352 - 2p, Jtoxoz : (36)
and
2 2
0 JX _ 2 0 ‘jx HO BBp (37)
32 ° 3 M, 3ty
323 823 H 3
R (38)

showing that only for incompressible flow do they satisfy the same equations as o,
and ,jjz ; in a campressible flow their oscillations are coupled to those of density.

8. Wave-Motion Equations for the Density and Transverse Components

Differentiation with respect to t of equation (25) gives

Y K AP 2
VIR L el 8 (39)

where the equations (22) and (27) have been used, and the gravitational potential
has been amitted. Now

2 a‘11: 9
v hz = bx W - 3‘% (%0)
Hence, the density satisfies
baA® o B,j 33
V?p + [ 3 - 15%] ()

To obtain an equation for p alone, we eliminate ‘jx and Jy between equations (37),

(38), and (41). The result is

1
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32 |32 - 2 % 3%
o |5 o P| Rzt T Ve TR B ()

° 3t2[ax? Bya

vhere a two-dimensional laplacian appears. This equation shows plainly the radical
departure of the "new sound-wave equation" from the ordinary sound equation in the
absence of a magnetic field.

We may ask now if it were possible to satisfy both equations (42) and

82p 22
a.—1;2-.8_0Vp=0 (!'"3)

Then, by virtue of the former, we must have

% , 3% .
+2L -0 (44)
Ya 3y2

and hence equation (43) reduces to

3% 2d° '
o "

vwhich admits a solution of the form

o & ot -72) (46)
provided that
2
)’ = 2 (47)
a
o]

We can now easily verify that (U46) is effectively a particular solution of
equation (42) under condition (47). Thus sound waves appear possible in a conducting
fluid penetrated by a uniform magnetic field, with this great difference that they
do not spread out three-dimensionally as in ordinary acoustics; instead, they propegate .
_(without attenuation) one-dimensionally, along the magnetic lines of force. It is a_lso
interesting to note that in contrast to m.h. waves, this propagation does not depend on
the magnitude of the magnetic field present.

15
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Equation (42) cen be rewritten as follows
32 % 2
—_-(a +A) p+8.A p=0 (48)
32 V2 2 V

Differentiation with respect to t of terms of equation (48) ylelds an equation
given by Lighthill(l7) for the expansion A = div v.

Let us came back to equations (35) - (38) and improve our results. Elimination
of p between equations (35) and (48) and then between (36) and (48) gives

3° | 9[22 2 2 22232 2
'a"s“(a—"‘fs—v
w,
262 REF 2,2 2| *
R - (2 - R)f | 2202 -0 (49)
° 322 pt2\at? ®

Similarly, elimination of p between equations (37), (38) and (48) gives

Sl ol 2
Sl - o) i Do

218252
e _a_%.(é_ N2)+a Lol - (50

° 322 [at2lat2

Equations (49) and (50) show that the quantities

2[52 2 %%y
62 d )Ve 2 2 b (51)

x’‘y

are propagated along magnetic lines‘ of force at Alfvén velocity Ao' These quantities
are identical zero if they were zero initially; under this condition, equations (49)
and (50) reduce to fourth-order equations of the same type as equation (48).

16
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CHAPTER ITI

THE GEOMETRY OF DIPOLE MAGNETIC LINES OF FORCE

9. Preliminaries

The equations of motion in the case of a constant magnetic dipole are camplicated

and require scme detailed discussion of the geometry of the magnetic lines of force.

(22

of the time (see his book, page 215). He also calculated the radius of curvature of

Stormer was the first to use in his equations the arc s of a line of force, instead
the trajectories in the equatorial plane of the dipole (loc. cit., page 221). Also,-
other authors used at least the element of length of magnetic lines of force in various
of their calculations. However, nowhere do we find a detalled discussion of the

geometry of these lines. 1In this Chapter, we propose to fulfill this need by a systematic

account of the geametry of magnetic lines of force for the case under consideration.

10. Equations of Lines of Force and lLinear Element

As well known, a dipole magnetic field has components

H = -M 3xz H = -M 3yz H = -M E__:_QE_ (l)

where M 1s the magnetic moment of the dipole, r2 = x? + y'2 + 22, and the sign is
chosen such that Hz is positive in the x,y plane, which is the equatorial plane of
the dipole; this requires that the dipole has its negative pole directed upward.

The differential equations of lines of force are

dx = _d_.L_ _ dz (2)

-3xz  -3yz x? + y2 _ 2z2

The first two equations give at once
¥y = Cx (3)

where C is a constant. Equation (3) represents a family of planes passing through 0Z
axis.

17
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Then, by virtue of (3), the last two equations give

dz _ 222 - A2x2
dx 3xz
% =14Cf

This is a homogeneous equation of the first order. On substitution of

Z = Xu

the equation becames

dx _  3udu

X - "2
X u‘+A2

in which the variables are separated; the solution is

- =
3 - B + 42)

X + A

B being a constant of integration. Hence

4

= B(x2 + y2 + z2)
that is

2

X = ar

where a =ﬁ

We now introduce the polar coordinates
\

r cos @ cos A

r sin @ cos A

Z

r sin A

F-1007-1

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where )\ designates the Jm,ss.gne'tzic latitude. In these coordinates ,' equation (10)

becomes

18
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cos® @ cos® A = a’r (12)
’ ' To eliminate @, we write
. §=C=tan¢ (13)
_ . Hence
cos® @ = =+ (14)
; " @41
,A ' and equation (12) becomes
‘ ro=Tr cos® A (15)
1

where we put r = 1/ E3 (C2 + l)] . Equation (15) is the equation of lines of force
in each meridian plane; it is obvious that T, is the value of r for A = 0 (in
equatorial plane).

In Cartesian coordinates, we have the following parametric equations of the

g

lines of force

W

r cos A

'C2+l

=

Gh Sm G AN

=Crcosk,

| 6
I o

e

-y

z =1 sin A

J
To calculate the linear element of these lines we may use either equation (15) and
t then
as® = ar® + oA (17)

or the parametric equations (16) and then we have
ds° = & + ay° + az® (18)
The result is
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1
ds = rdAM1 + 4 tan® x)a

11. The Frenet Formulas for a Line of Force

The tangent to a line of force is defined by

N
a—g- 3 sin A
=5 = -
\/02+1v1+htan2k
B=%z=- 3c sin ) ;
s
\/c2+1\/1+htan2x
7=§_§=Q-2tan2x)cosl
ds
ﬁ+htangx J

We next calculate the quantities da/ds, dg/ds, dy/ds.

do _ do A

3s - aras ’ etc.

After same calculation, we obtain

ﬂ
dx _ 3 cos A 1 - b ten® A
ds 2 \2
\/02+l'r(l+hta.n A)
2
48 _ -3C cos A _1 -4 tan” ) L
ds 2 \2
‘/ce+1l r(1 + 4 tan® A)
2
dy _ -9 sin M1 + 2 tan® 1)
ds r(1 + & tan® A)° y

The radius of curvature p is given by

1 da2 2 d2
NER R

91 +2 tan® 1)°

r2(1 + b tan® )3

F-1007-1

(19)

(20)

One has for instance,

(21)

(22)
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In the equatorial plane
1 .
p=3=73 (23)
‘ ' As a verification of result (22), we may use the formule
-3 3
2 2,2
r +r'
' r~ + 2r' - rr"
One has
' r=r_ cose A
)
. r' = -2r_cos A sin A > (25)
r" = -2r (c052 A - sin° A)
1 ° )
p. Hence
? 3
' r?;(cos1¥ M+ 4 cos® A sin° h)g
p =
coss k[cose + 8 sin® A 4\2(c032 - sin® A.)]
3
r, cos® M1+ 4 tan® x)a
= (26)

3(1 + 2 tan® \)

which checks our earlier result (22).

The principal normal, which in our case reduces to the normal of lines of

of force as these are plane curves, is determined by

o _ _ _cos A l-2ta.n2>\.

Q. =p =
1 ds Y
V’02+l\,l+l+ta.n2x
ag CcosA.l-Qtanex
\/02+1\/1+ htana A
_ 4y _ 3 sin A
7L EPE T

vl + 4 ‘ca.n2 A
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The binormael of lines of force is, of course, the unit normal to the planes

¥y = Cx; therefore, its direction causes are

0 (28)

C 1
Q. = —————— B B ey —— Ya =
2 [ R~ v 2 7 e
02 + 1 C2 + 1

Therefore, direct application of the Frenet formulas has to give the sbove results.
This will verify our previous results. One has

a, = By, [9 sin® A + cos® M1 - 2 tan2 x)z]

e oG 1
1 V02+lll+htan2k

2
- —C cos A (1+5tan2>,+utan)*x)

, 2
"CQ +1 1+ 4 tan™ A

C cos2 A

= S (L+ 4 tan” A+ tan® 2)
\,CQ + f 1+ 4 tan™ A
C
= — (29)
uC2 + 1
Also
By = 20 - Oy = - = (30)
02 + 1
7 = 0By - B =0 (31)
which values agree with those given by (28).
2z
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CHAPTER IV

MAGNETOHYDRODYNAMIC WAVES IN A CONSTANT DIPOLE MAGNETIC FIELD

12. Preliminaries

Dungey(9) in his remarkable report of 1954 has discussed in some detail the
electrodynamic behavior of the Outer Atmosphere in the presence of a constant dipole

magnetic field. We shall here approach the problem from a different point of view,

however, concentrating our attention, as we did in Chapter II, on the vorticity field
and the current density.

Consider an infinite mass of an electrically conducting fluid at rest embedded
in a constant dipole magnetic field H. To simplify the discussion, take the con-
ductivity as infinite and assume the fluid to be a hamogeneous incampressible
material. Assume that as a result of a perturbation, a velocity v is produced in a
certain region and that the magnetic field beccmes H + h. The amplitude is assumed
to be small enough for non-linear terms to be neglected. We propose to investigate

the magnetohydrodynamic behavior of the fluid in terms of generalized Alfven waves.

13. Fundamental Equations

The relevant equations for the problem are

oy
Po ST = -grad p + ue;j_ x H (1)
Sh
sc=H -V)v-(v -V (2)
divyv =0 (3)
divh =0 (4)

the condition dH/dt = O(constant dipole) has been used in equation (2). Since

curl H = 0, equation (1) can be rewritten as follows

v mH -
o ST = -grad[p + ]+ H—[ V)b + (b -V )H] (5)
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Taking the curl of terms of equations (5) and (2) we obtain

3w b
X, 5T "I curl[(g V) + (b -V)H (6)

CH]
o = cm[(g Py - (v .V)g] (1)

We have
OH oH
curl [(E -V)r+ (b V)E] = bye(H - V)J + gred h x 5=+ grad hy X3y
oH oh . oh

+gra.dhzx5;+gradex5§fgradnya—}-’-

dh
+ grad H, x 6% (8)
After same calculation, we obtain
curl[@ P+ -vm] - un[@ V- v)g] (9)

where the condition curl H = O has been used.

Hence equation (6) can be written

S

C ue[(E V)1 -Q -V)_}z] (10)

On the other hand,

dv ov
curl[(g Vv - (v - V)_I_I_] = 2(H -V)o + grad H_x a—;-' + grad Hy x F;

ax BE
+ grad HZXB_Z' grad Ve X 3%
3H ag]
+ grad vy X 5y +grad v, x 57 (11)
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In this case, there is, however, no simple way to write vectorially equation (7)

in a compact form; we have for components the following equations

¥, [ 1 m dx dH,_ [anx 3K dm, ]
21:-;;-.— (H -V)_@Jx+ —a—fe31+ - e32 + We33 - 13z %1 Y Sy o0 *t Sy e23-
3. T 7 3 H dH, FHX 3K 3,
on & = L(E'v)ey+¥ell+3_zzel2+3?e13- Jx %31 F Sx ©32 t Ix ©33]
3, N 3K 3K, [BHX 3K 3, ]
en 3¢ < L(EV)‘l’z*BYele*F%eez*BYees' Ffen*‘o_ylela”"ayen_

(12)

where eij is the rate of deformation and where again this condition curl H =0 has

been used.

14. Propagation at large Distances

These equations are rather camplicated. We may simplify them by observing that
i

the derivatives of the camponents of the dipole magnetic field are the order of r

3

while these components themselves are of the order r . Therefore for r sufficiently
large, we may neglect the term (j .- )H in equation (10) and similarly we may neglect
all terms such as (BHX/By)eBl, etc., in equation (12). Hence, for r sufficiently

large, equations (10) and (12) reduce to

(2}

dw 5] 3j y 33 .
2po§€=ue nyx-!--ya—y"!'--zaz (13/
and

Ch] o 0w O
23‘{5€= xyx+Hyg§+Hza‘z (l)"‘)

In the second place, we have a long a line of force

=g X =g -y 4z
=iy Hy‘Hds’ H =Hg (15)

-where H is the magnitude of the dipole magnetic field and ds the element of length
of line of force. Hence along a line of force, equations (13) and (14) can be

written
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ow 9j o 33 |
- = dx 4 dz
20,55 “HElr s t 5y &t 5r as (16)
and
93 dw dw dw
< - dx - g - dz
2 t=H[3;§+6§a§+sza] (17)
that 1s
dw dj
2P, 3¢ = Ml 55 (18)
33 dw
st =Eas (19)

2 <2
5—'2“2—%%%363 (20)
ot ds
2. 2
32 32 2 ds ds
whare
2 Me}IE _ ueM2 cos® ML + 4 ten® A)
bap  — Lyp 6
o o r
_21+ll-tan2>\. (22)
=7 T&%& 10
r_ cos A
o
where we put
2 ueM2
4 =E—n'p
o)
26
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We achieve the reduction of these equations by taking

latitude A\ as independent variable. We have
% A gy
ds ~ A ds
2 2
R
3 »El%s  as®
and
2
& _ | djar]lax
2 ~ |dxjds||ds
ds

Now (see Chapter III, equation (9))

ar _ 1
ds A 1
r, cosz,x(l + 4 tan® h)e

therefore, we have

2 2 tan A2 tan® A - 1)

da A -
ds” ri cosh M1+ 4 tan® K)g

On the other hand

an® an
d) ds

and

_ 67?&3 + 8 tan® A)tan A %
- A

rgcosIIF ML+ b tans A)

Substitution of these values in equation (20) gives

F-1007-1

instead of s the magnetic

(23)

(2%)

(25)

(26)

(27)

(28)

(29)
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2 2
?_§=721+um2x39 1 +39 2 tan A2 tan> A - 1)
32 rf cos 10 |32 ri cosh ML+ 4 tan< A) 3 ri cosh ML+ L tan® 7«.)2
o 2 3 tan A.(3+8ta.n2 )
*RT B _18 2 (30)
, r_ cos M1 + 4 tan® A)
that is
3% 2 3% 3w
— = + 7 tan A - (31)
32 1'1; coslh » |22 3
and a similar equation for j. Supposing that
o(2,t) = ™™ @ (3) (32)
we get
d2w dml
® 28 1k .
$+7tanx—df+(3rocos oay =0 (33)

where 62 = d2/72.

15. Integral Equations for Vorticity and Current Density

Equation (33) can be transformed in en integral equation similar to that given
by Dungey (see Reference 9, page 33). In order to do this we use the identity

2
a8 3 107 = wack [d_‘L’l. = 2 ] X
5N %e M T (g_)l sec x):] sec A - + 7 tan A 33 + 3(1 + 5 tan k)gﬁ (34)

Hence equation (33) can be written
i[s r ( 3 A.)] = |3(1L+5 tan® A)sec A - 521:'8 cos™ A secd A (35)
aatsee A gy ‘g sec o S

or, by putting § = @ sec3 A,
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%[sec A %%] = [3(1 +5 tan® A)sec M\ - Barg cost> 7\]9 (36)

Assuming that for A = O, dg/d)\. =0, l.e., dz_gl/dx = 0, we obtain the following
integral equation '

A A
2(x) = 2(0) +f cos A AN f [3(1 +5 tan® M)sec A" - Ber(s) cos™3 ﬂg(k")dk" (37)
o

(o)

which, curiocusly enough, has the same form as the equation given by Dungey (loc. cit.,
pege 33) but is of vectorial character of and includes an additional term

3(1 +5 ta.n2 A)sec A; the variables and assumptions used to arrive at this result
differ ratically fram those used by Dungey.

The quantity J(A) = J_l(x)secB A verifies, of course, the same equation (37).
Equation (37) may be integrated by successive approximations.
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